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TRANSLATOR'S FREFACE

Am v-researeh"’in dynamcal weather prediction proceeds, mcrees:ing
attention ia 'Be:l.ne; given ‘bo the mathematical pmblems encountered in
the computation oj' numermcel solutiona of the. dynamical equatione for
the atmosphere; the mteomlogist'a attention is thus d.rawn to prob‘lems'
of numerical apalysis. Basic to mich of this work are the classical .
,ex;‘l.stence”a.nd uniqueness proefa ofﬂCburant, Friedrichs and Lewy for -

ellipt_:le.and ﬁyperbol;c partial difference equations. The present

. tmslation' i:mé‘ been prepareﬁ 'iﬁ order to fill the 'need for an English

veraion or tnis paper » \md thareby to make this funuamenual wox-h aore

"

B readily available and useful to the meteomlogical profession in -

partiouler, After this trenslation ves completed, hovever, my. stien-

) t:l.on was drewn to a 'previoixl Engiish translation prepared by M, H. Rand

i.n 1956 at the British Atomic Energy Reseamh Establishment, Harwell,
The c;ontgmruon il in goneral reuming, and. 8 munber of errors noted
in Rand's tmslat:l.on have here 'been avoided, ‘ ) )

Partidc/{lq,r onre hn been taken 1n 'l-.he prasent 'emnelation to |

 preserve the "1’1”1” of the original German as olosely &s possible, Tn

this. connect:wn Miss Oberlﬂ.nder, of the Dapartment of Meteomlogy, ,

"

U C I..A., .bu contributed sisnificantly, as vell as assiating in the

pzfeperatiop of the anal meguseript. The figures have been redrafted

‘and enlarged to improve their readsbility, although no other changes . -

"of format have been made,

W. lLawrence Gates
Project Director
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ON THE PARTIAL DIFFERENCE EQUATIONS OF MATHEMATTCAT, PHYSICS

By
R. Courant, K. Friedrichs, and H. lewy

In dealing with classical linear differential equatioms, if

_one replaces the differentiel quotients by difference quotients

defined over scme ~~ let us assume rectangular -~ grid, one obtains

aigebraic problems of a much wore transparent structure, The

. following paper will underteke an elementarjr discussion of these

algebraic problems and 7ill principally discuss the behavior of the
golution as the meéh width of f;t;g grid goes to zero. To these 'ends
we Limit. ourselves ‘ma_inly to the simplest, but nevertheless ty;piéal,
cases vhich we hendle in such a manner that the applicability of our
methods to more general Aifference eqpintione with arbitrérily many
independent variables will be clear. “

' Corresponding to the famili@r problems of 'differentiqi equa~
tions, we wiil treat 'bot;ndary value and eigenvalue pfoblems for

elliptie difference equationa, and the initial valuc :pro'blem for

o hypebbolic or parabolic difference equations. We shall prove with

uimple typical examplos thet the limiting proceu is alvays possible,
l.e., that the aolutions of the difference equations converge tovard
the solutions of the corresponding dirterentiql equntiona ; indeed we
shall find that for elliptic equations in general, the differsnce
quotients of arblitrarily high order tend toward the corresponding
differential quotients. The existence of a solution to the differ-

ential eq_uutbion i8 novhere asgumed and indeed we obtain thi‘ough
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the llmiting process a silmple exisbence ;raof.l But while for the

- elliptic case convergence ig the rule independenlly of the cholce

oflérid, we will show that in the o8¢ of the initigl valne problem
for hyperbtolic equations convergence can be assumed only when the
ratio~of grild mash sizes in different directions satisfies certain
inegualities, which ip Turn wre determined by the positiou of bhe
characteristicn relative to the grid.

, We tuke as & typlcel exmmple of the elliptle case the
boundery value problem of potential théory; The dépendenpe of 1ts
golution on the solution‘or the gorrespbnding diffmrenc? equation
has been, moraover, extensively treated during the past'féw ;}gears.2
0f course » in our case, in contrast to the previous 'wo;rk», the .

particular speclal properties of the poﬁéntial equation will not

"be axplicitly used 8o that the appllcation of our method to other

yroblems is not overlookad.

I Our method of proof may be extended without difficulty to
cover the boundary end eigenvalue problems for arbitrary linear
elliptic differential equations, and the initisl value problem for
arbiuary lineax hyparbolic differeptial ecuetions,

J. le Rovk, Sur le probldme de Dirlehlet, Journ. de mathém.
ur, st appl., (6) 30 (1914), ». 189, R. 0. D, Ricbardson, A New

ThoT 15 B Boundary Problems for Differentisl Fquatlons, Trens, Amer,

Mnth 8oc. 18 (1917), v+ 489 £7. K. B, Phillips and N, Wiener, Nets
w53 the Dirlchles Problem, Publ . 0f the Mess. Institute of Technology
(19e5). (Translator's notes see J, Math. Fhys., R:105-124 (1923)).

Uafortunately theps papers WETE WIBAGG %J the first of the
present three suthors (Courant) in the writing of his note "Zur
Theorie dsr partiellen Diifarenzengleichungen”, Q8tt, Nachr., 23, X.
192%, which the present work extends.

Compeyre further: L. LTusternik, Yooy einige Anwndungen der
direkten Mathcdan in der Variationsrechnung", Beeuil de la Socléta
Mathém, de Woscou, 1926, G. Bouligand, "Sur le probléme de Dirichlet",
Tt de Ia poc, polon. de masthém., I Keskan, 1926,
™YY TTFor The usg el diliersnce expresslons, snd for related works,
sez R. Coursnt, "Uber direkte Methodeu in der Variationsrechnung",
Math, Annalen, 9, p. il and the literature cited there,
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- grid pomtu A sequence of mints'm Llu;tz mh pgint mfm,@mf

In &ddiﬂan to Lhe statéd pri}neipel part of the work, wé shall
append an elementery algebrain discussion of the boundary value problem
for the elliptic squations cormect*d with the vell-known problem of
random walks arising in etatistics;

I. FHE BLLLPTIC uAbm
§ 1. ‘Preliminary Remarks

1. Definitions, In the plane With rectongular coordinates .

X,y . ve consider first of All a square grid of pointa-of mesh width -

-

h)o , all poim'.a having the coordina.tes X= hh ‘j mh
‘ nm_atltz---.

Row let G ve a region of ﬂ:e plane bounded by e con'oinuous

aloaed curve that- ia free or double points. 'men the nomsponding L
i grid region 6|‘ - which 15 uniquely detemined. for aufficient'ty emall 7
| mesh width - ah&ll conaist 01‘ 111 thoge gr:td pqints that licx :Ln G nnd. )

which can ‘be Joined to a fixed or preseribed grid point of G by ‘ LIl

"eonnected peries of grid points. w: denote as e eoxmeeted nriu ot‘

of tha fonr neighboring pdih'bs ot the follovins point‘ We donof.e a8
a bmmdnry poinb of Gl\ . point whpn :our mighboring pointn & not

w1l belong to Gk " M1 othar points of Gh ve call imterior potnts, .

We sm.l.l consider functions u ’ 1r, <+ Of position in the nid
1 e, _ﬁmctinna which are definad only for grid points. Ve shan. :.tl;n
‘dencte them as % (X ,Y ), (X Y )y «ve o For their foxwsrd and

backward difference quotients we employ the following abbreviationa: o

Sl Gl 5
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are runet.ions in the srid..

ala

-‘g[ﬂ(x-;-h,”)—u(h‘,‘j)}:%x 'R [14. (x,y+h)- u(x, ‘:1)] Wy

‘:'M.(X,y) U (x-h, n,)} A [M(x,y)— u(x,\,«h)}: ng .

L
Correspondingly we form the difference quotienta of hi;_,,her

oxder, e.e;.,

2. 'Differe‘nce Bxpressions and. Green 8 Transformations. We

o got the sImpIest generdal view of linsar difference expressions cu. '.auv: ‘

econd o:dar from the pattern oi‘ the theory of :par‘aial diffcren‘cia].

equations. if we form i‘rom two functiana u. and Ar and their fomrd .

d.ifferenoe quotients a bilinear expreseian o

B(“ V‘)= o.u +bu,, v, + cu.,v,,-«-du,tr,
0 (. -
e u,,v + @u,v + mv,dw,{gw

), ow «=«<x.9) ) 9% 9<x»h s

, e
.ir- :

From the b:!.linear e:qpreuian qi‘ the ﬂrut order we derive &
Ty

diﬂ'eﬂmee expression of ﬁhe fsecond order in the rollowing wsy- Ve

¥ fngn the sum
wzzamw

dver'alli points of a reglon Gh in the grid vherein B (W, '\r) is set




- to zero for the difference quotient between a boundary point and a

e gttt e B

point that does not belong to Gk' We now transform the ,sum‘ through

partial summstion (i.e., we arrange according to V'), and split it

Tt v

e into “’a sum 6Qer the get of interior points Gl\,. and a sum over ‘the
: set of boundary POints l" . 'l'hus ve obtain |
h“ii B(«,v)-— -k 22 vL(ulwhi‘.vK(u) I8

Gp 6y L R
S L(u) is the linea.r "difference expression of second ordgr" derined ' o

for. all mterior points of Gh’ : » e
7 L(uT '?tw.x)-; + (bur)g + (Cug)x +(°‘-“9)"5;
 — aug ~-fUy + (¥u)x +(Sulg ~ 9“"

R(‘u.) 19 a linear &ii‘fevence expreauion for every boundary point

" whose exact form we shall not give here.
If ve arrange - E: B(u, ‘u") with respect to W, ve get
G : .
h .
h Ei, B(uv) = - zz uMM hZuS(«r) @

'M(*v') is ga.lled the adJoint diﬁ‘erence expresaion of L,( u) 3 e hnve

M (V') =‘ (d‘\rx)x + (bvg)x + (C-‘U'x)y + Aj\l”)g

P mralin ,j,;,,ﬂ,,,';;,j B o+ (dv); + (Qv)g W S v, 9'0'
"i"-‘ "hﬁ’e 3 (‘V‘) :Ls & diﬂ’erenee expreaaicm for the: baundary comsponding |

o R(u)

: u' The equations \l), (2) and the following equation

h ZE(VLW) ’uM(V)) +h Z (-u-ﬂ(u) uS(v)) (3)

are called Green s formlas, . . h

V]
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The simplest snd most important caese occurs if the bilinear

form 1s symuetric, i.e., if the equations ba ¢, = ¥, = S

exist. In this case the expression L (1) 18 1dantica.l with 1ts
adjoint M(v), ve therefore. call 11; t:he selr-adjoint case, md .'d'. -

is readily obtainable fmm the qgadratic expreﬁsion

B(M u) = a.ux + zbu,u,-kal.u + 26U, " +z@u,u+9u.

H.

In tha following ve shall limit oﬁrselves wainly to expressions N |

1, ( 'u.\ which are self-adfoint.f_ The ¢ ehare.cter of the d.irference T s ' | |

B erpreesion L(u) dependu .above-all on the naturg of those terms: oi‘ ST
the quadratie form 3(1‘,‘“) vhieh are quadratic 1n the rirst d'.l,f- o
. fevrence quotienta. - We asll this pm of B(ﬂ ﬂ) the eharacteriat*g

fom: "; O

P’"(u u") a.ux +zlm,u,+ du, .

o

y aa P(u M) is (positive) d.efinita or indeﬁnm in the ¢

bl o i Wt W i | = TS

e A

deerence q_uot:lentu ve. call the comqunding d.ifrerenee expmg,,im;;;m,

s 1 g o B

f— [ 'rha Mrfareme ex:pmuion o .
o ‘ Ay_ ukr +‘!¢9§ f,,,'ff o
. v.ttn whieh w shall primrily eonnem ourulves in the :t‘onciwing

paragraphs,’ is elliptic. I particular, it is obtainea, from the
. quadratic expressiun : o o ) . .
" .o , 3 2
B(uu)- u 4.1{, or’ ui"'" Ks‘—- .

S
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Hence the corresponding Green's formulas are”

F T ST IO ]
P s e it £ <

o »h?‘z

R ZZ ('V’Au MV)+ h

. ‘;,;,;

(uy+u))=-k== uéu th_uﬂ(u)

Gh‘

Z('v
h

(h)
]

Riw) - uR (v)) o, (5

""i'he iiifference expresaion Au P ‘u

‘1s obviously the

99
_analogue of the differential expression a‘u/ax +'a"u/95 for a function

\* ’ ;--.;«u(x’,g ) of the continuoua va.rie.blea X and u writt out

S "uompletely the difference expreasion reada

'""‘,wnerefore hsu /4 48 the excess of the arithmetic mean of the -
' mneﬁion values &t the i’our neigh’boring poin-bq over the ﬁmction

' ﬁlue

at the point in quastion.

: Completely similar aonsideratians Lesd to linea,r aimrenco ' ' o

| = E from the diffarence guotient_f _of.second order. Wg aantent ourseives
o : with rthe gxmph of the .dd.—f-fermoe «'expression‘ | '
. . . + . ; . - :. i "7. .
F f “adu= “xxwx *21"“59 uwvv L
, © 3 . The boundary expression R (M) may be written here as followa: . o

If “ﬂ, u' , bI.O'uo
concerned and at its 4 -neighboring points (9 €3), -

ﬂ(u) > JR(M‘* e b My -'-Di‘u,),_

be the function velues at the boundary ‘point
then '

e B R S TP I ot et aqorrones

{u(mg)m(x 9+h)+u(x h,u>+u(*.9 h)- 4umv)} o

e ,.;,‘uu':,“‘%a-.wrwb-ur i v 1 S




with resp«act to \r , OI cor respondingly replaces 14. by the expresaion

AA'u, the function value at a point is connected with the i‘unction

'values at its neighboﬂng pomts and a.t their neigh'boring po nts » and

. are mleo interior pomts of tbe region Gk , (sae ('})), the

‘point of tha bounaary strip Ph* f‘ , thaugh e omit ita mre 2

o precisn fom. .

5= , : ‘

Thiz arises from the quadratic expression

Blu,u) = (u“fuw) (M*) f ' |

“ ii‘ one orders the sum ' S o o ;

hZEAMAv‘ | o » ;

A’M. in equation (b) ~ One mst notice -'however that in the expression

accordingly is defined only for aunh points of ‘c.he regic)n Gh,vnicn

h ?Z Au M’ = “ Z'zv AMH' hiv R(m, . |
G L T

where R (1.4,) ia LS definable linear differenae expresaion for ee\c.b.

{‘,’ ;Lnd.mates in thm cusa the eet of bounaary poim;a

'i‘blems and Eigenvulue Prohlem
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equation

‘v:.‘wmish; or, 1n other words, the solution 15 uniquely determinad s if

Q-

In a grid region Gf\ let there be given a self-adjoint

-elliptic linear difference expression of the second order L ().

It mey originate from a quadratic expression B (% ,M) which is
positive definite in‘the éense that it cannot vanish if u»,‘ and
‘H.g themselves do rot vanish.

We now determine in G L & function 9L satisfying the difference

L(w)=0,

and which éoincides with prescribed values at the boundary points of

_ thie gricl region.
Our requirement is represented by just as many Linear equai..tuns -
and therefore function values that are to be deteminea,“ as there are
' ‘inﬁgrioi:xp-id' points ot:thé gr;id, resibn'."f_ 'Som.e‘o'f these equations are
hombgenebus; nemaly, th“':.;a--»which eorimspona to grid poihts vhieh, with
their four neighbors s lie 1n the interior, others, in which bound.ary -
, upoints of the gr:ld region entar, are nonhomogeneous. I we Beuv the
_ ;rig,ht-hand side of the nonhomgeneoua system of equations (1.e., “the
‘ ’ boundnry valuu at u) equal o zerc, then 1t follova. at once from
'. _‘."-'_‘Green ) fomula (1) that B (84 ,4) vanishes when ve, set, 'uz'\!' 3 anét
: ~becauae of the positive daﬂnue character of B(n,u), there algo.
-y follows the vanishins of Uy, Uy end therefors also of U. T the "
‘ dufemnce equa’odon has the solution ur-o 1f the boundary values :

S If one considers an arbitrary difference ed\aa’cion of the secen& o
: ord;ér L,(u)= 0 es a system of linesr equations, and constructs the

tmnapoeed system of equations, then this transposed set is repreaented

" by the adjoint difference equation M (V)=S0 . Thus the above aelf-
‘ adaomt Aiffarence equation gives rise to a linear eduation system with

aymme tric mam‘lx .

AR bl ST et 4 R b
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at all, by the boundary values, since the difference of two solutions
with theisame boundary values must vanish, 1If, however, a linesr
system of equations with just as many unknowns &s equations possesses
the propexty thaylfor vanishing right~hand sides the unknowns them=
selyea mst also vanish, then the fundamental théorem of the theory
of equations asserts that for an arbitrarily presef}bed right-haﬁd
sida exactly one aolutién must exist In our case there follows at‘
once the existence of & solutlon of the boundary value problem. H

We see thnt'f ¥ our elliptic difference equaticns the unique

determination and the exizstence of a solution of the bounda?y value

_problem are related.to one another by the fundamental theorem of the

theory of lines: equations, while in the theory of partial differen-

t1a] equations both facta must bo proved by quite differsnt methods,
. B . . - . o

 The basis for this difficulty is to be found in the fact that the
) differential eqpations are no longer eqpivalent to a finite number
~of equations, and 80 one nan no 1onger dapend upon the equnlity of - )

the nunber of unknocwns and eqnations.if R ."' - li'rr;f::; s

Since the difference equatioh - -
Aw =

- originatap from the positive definite qpadratic exprtnaion

W zz(uwus)

than the boundary value problem of this diffe enco equation 1s alvnys

uniguely solvable,
'Thg fheofy for difference equatione of higher ordef, e.g., OF

fourth order, 1s developed entirely ;.rallel to that for the difference

st AR st -
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equations of second orden for whieh the exanple of the difference

equation
BAw =0

may be sufficient. In thia case - the vn)ues of the function W in the

boundary atrip r Bt r‘ mst be given. Evidently here also the

difference equation AA'M. 0 ylelds just as me.ny linear eauations

as there are unknown function values at the points of Gk. . In order_‘

to demonstrate the ﬁhiqqehesa of the solution of the bcundary‘value
problem"we need only qhow that a solution whieh 'has tl_xe. value zero-in

the boundary stilp f"‘ + f' " necessarily mishea ":i.dEnt”ically'. ‘

rth:la purpose we note that the sum over tha comSponding quadratic ,

h ZZ(M) o

for such a mnction u.niahes s 48 one may notice by transforming the

sum accordins to ‘Green's formila (6).  The vanishiug of the num (7),

' however, auus t-ne van:lshing of Ay in all points Gh , and according

‘ to the a.bove prooi this can only happen for vanishing boundary values

if tha mnction u uulmes the vélue zero throughout the region. Thus,

" our usertion is proven and the’ uniqueness of the aolution of the boundary

. value- prablem of the difference expression 18 _guaranteed.”?

P

> For a discussion of the solution of our boundary velue problem

" by iterative methods, see, among others, the treatment in: "Uber Rand-

vertaufgaben bei partiellen Differenzengleichungen" by R, Coursnt,

Zeitschr. f. angew, Mathemstik u, Mechavik; & (1925), ‘pp. H22=32%, In
ad31%tIon one T8 referred to the report of H.. Henky, Zeitechr, f, angew,
Math, u, Mech., 2 (1922), p. 58 ff., - '

j
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2, Relstions to Minimum Problems. The above boundary value

problem is related to the following minimun problem: among all
functions (p( X, \5) defined in the grid region Gh which assume
prescribed values at the boundary points, there is to be found such

a function @Y= U (¥, Y) for which the sum over the grid region

W* 22 B(e, ¢)

assumes the smallest possible value. In this case we assume that the

quadratic difrerence expression oi‘ the tirst order B (%, ®) is positive .

definite in the sbove sense, (Sea p. 6.) One may notice that the y

difference equation L (@)= 0 results from this minimum requirement

as a restriction on the solution @@= (X, 9), where L. ( ¢) is the

difference expression of the se‘dond order derived in the ‘above mapner

trom B (@, ¢e), ei‘bher by applying the mles or the differential cala

’ culus to the sum ‘l 52 B(Q ¢) as a i‘unrtion of & finite number

of values of Q at the grihd points, or smilnrly, by employing the :
usunl mef.hods fmm the calculus of variations. ' :

- By way- of exmple ) the. bo\mdary value problem of finding s . '
aoluticm of the equa.tion Awu o V;fhich auumas preacribed boundary
values is equivalant to the problem of. minimizing the sum 'l 22(‘(; "'?, )

over all thou i\metions which. ansume tnese boundary values,

‘ The uituation is entirely aimilaér for difference aquaﬁions of the '

fourth ordér, where a.ga.in we restriat,_ ourselves to the example of

AA?:,o' . The boundsry value problem corresponding to this fdifference

: , 2 2
equation is equivalent .‘to\ the problem of minimizing the sum h. 22 (Ne)
. 6 f )
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variables tends to infini'by.6

13-

over all those functions @ ( X, Y) which take on the prescrilcc valuss
in the boundary atrip Fh' . Besides this sum, still other expreszions
which are quadratic in the second derivatives yleld the equation

O AU =0 under the requirement that they are to be minimized, as

for example the sum )
2 a »
i zz (Upy 42Uy + Uy, )

in which there appear second difference quotients exclusively at

‘poirits of Gh

That the poged minimum problem alwaya possesses a solution
follows from the theorem that a continuous function of a finite number’
of variables (the ﬁmetioml valuea or Q at the ald points) mst
alwsys htwe a minimum ir this ﬁmetion is bounded from below, and if

it tends to infinity qa goon ns at 1e9.31; ‘one of the independent ,‘

-3, 'I.‘h'e»' Gmen's F\mct'ion. “Oné can trea.t tm boundary va.lue

problem oi‘ the nonhomogeneous equn.tion L(u)- -F similarly to the _
,boundnry vnlue pmblem of ‘the wmgeneous -aquation L (u )= 6., It il

sufficient for tbe eau of the nonhomganeaus equat;i.on to limi'le onuelf

~ to the case when the boundary values of 'u miuh overywhers, uince

obtain the solution for other bwundary valuel by the addition- ar 8

u

auitablo splution of the homogeneous equation. To ‘solve the ny;sten of A

linear squations which is represented by the bmmd.ury value probleém of

& It can easily'be verified ﬂmt tha- saaumptions for the applica-

" tion of this theorem are velid.
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_points (X, 9) and (§, nv), the Green's function of the difference

rela.tion

SR IR A e 40t srpmt e s e e e =«

~ which the difrerence equation in Gk

=1l

L()= --f , we first choose the function +(x, \j) so that at a grid
point with the coordinates X= E , 4= N 1t sssumes the value = h—z ,
and At all other grid pointé assumes the value zero. If K(X,4;§,n)
is & solutlon of the special resulting difference equatlon ;rhieh will
now depend on the parametric point (§, N ) and vhich vanishes at the
bou.ndary, then the solution corresponding to an arbitrary function is

represented by the sum - o ' b

u(xy)_h ZZ K(x,9 S'I)F(‘i’l)
 We call the ﬁmction K(x,\,,; R ), vhich depends upon the

e¢xpression L (). 1fwve denote by R.( X,4;§,n) the Green's Tunction

of the adjoint expressior M (W), then we ha*fe the relation
KGR = K(sa8h),

vhich can be obtained immediately frcm Green's t‘ormla (5) Lf one sets

uﬂrk(%,lj %, ‘l) and VﬂK(X 535 Vg) For a self-adjoint
diﬂ'erenee expreuion there results from the above reletion the symetry I

o - e

"K-ff'i;sm»‘--:-K-(s-,m,n.- o

h n Envglue Problm s«;lr-uddpiut dirrcrqnce oxpmuions

L(u) give riu to eigenvalue problens of the folloving type et 1

thare be sought the val.ues of a parameter A - the qigenval.ues - ror

L (n) + A_u,=-4'0 |

'?__.*,. .

e
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posseases a solution -~ the eigenfunction -- which vanishes on the
boundsary f‘h .

The eigenvalue problem 1is equivalent to the principal axis
problem of the quadratic form B(bu , ). There are Just as many eigen-
values bﬂ(,l)’ A a(f‘) as interior grid points in the region Gh ,
and just as many corresponding eigenfunetions 14,(1),--"' s u(“)._ The
system of ei_genf\mé.tiona ;nd elgenvaluas and their existence results
from the minimm prob‘.l.epni: 5 »

‘ Among all the functions @(X, Y) vhich vanish on the bomidary
and satisfy the’*( m-ij onnogomlity'cbn&itiéﬁa
b2 == ez (Pmiyrimer)

a.nd the normali!.ation condition
h Ei *e = |

we aeek that one fe = u for vhlc‘n the sum

R zz B(e, @)

’

' assumes the sma]_leat value. The value of the minimum is the mth algen~

" . value and the function for which it is ass.ume,,d 'ia the mf‘h eigm:xt‘une.i:io‘n.’'7 -

7:‘ ' Be:'zsuae of the orthogonality oi‘ the aigeni\mctiona , 1. e., »
h WO A eo (V9p4), every grid function 9 (X, Y) which venishes

. on %h boundary can be developed :Ln a serias of eigenfunctions in the rorni

g = ? m (Ot ?-"

'-where the coefficients c(‘)) are obtained i‘rom the equa.tion

¥)

)= Esau .

Tn this way we obtain in part;icular the i‘ollowing representation
of the Green‘s funetion:

K(X,‘,, l )""‘" u (X‘J,u- (s:‘l)

g
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§ 3. Relation to the Problem of a Random Walk8
Our topic 1is reiated to the question of probabllity calcu-
lation, nemely the problem of a rendom walk in s bounded region.?

In a grid region Gh one may imagine the grid lipes as paths along

‘which & particle cen move from & point to & neighboring point. In
'Ebis ﬁa.ﬁh - nétwork our particle may now move at random, choosing by
~chance at -each ‘path’ Junction among the four available directioné --
‘all four a.i-ﬂ equally probable, The random walk stops B8 800N B8 8

bcund.ary point of Gh is reached, where the particle may 'be ebaorbed.

We shall aak: . K

1.  Wbat is the pi'obabnity w(P s R) that‘startirgg from &
point P one can arrive in some time or Other by a ra.ndom path at a
bo1mdary point R 7

2. What is the mathematical expec'tation '\r( P; Q) that by

‘ such & random path. stsrt!ng :t‘rom P one reaches a point Q of Gh

without. first meeting the boundax*y?

We ma.y consider this pmbabilit.y or the mthemticﬂl expectation
more precisely by the :(‘ollowing procesn. We imagine & unit quantity

of some substance existing at a point _P . The substance may spread

~out in our path net with a constant ve‘lbcity,» tr;welling by chance one

grid space in one time wnit. At each grid point exactly a quarter of

8 Here ‘ 3 is unnecessary for the discussion of the limiting
process in - § 4, _
9 There is an essentiel differente in the way in which the boun-

daries of the region are introduced in the following consideration and
in well-known methods, such as, for exsmple, those which ha\re besn used
in connsetion with Brownian molecular motion, '

For
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the incoming substance should flow towaxrd each of the [our directions,
The amount of substance which arrives at a boundary point will be held
there, If the source point P is a boundary point, then the entire
quantity of substance will remaln thei‘e. | »-

We interpret in general the probability W(P ; R) of reaching

the boundary point R by a random walk starting Irom F without having

" before touched the boundary, as the quantity of substance which collects .

after an infinite time at this boundary point,

The probabil.ity Epnl P,Q) of reaching a point ) in exactly

W steps from point P without touching the boundary, ve interpret

as the quantity of substance at point Q after i time unita when P
and Q are both’ interior poln‘c.s, 12 P or @ 1is a boundary point, then
we set :Lt equal to zero.

‘The value of E“(P Q) 1s Just the amount moving in h steps

from P toward @ without meeting the boundary, divided by 4 there-
fore it follows that €, (P;Q)=En(Q;P).

By the mathematical e..cpectation ‘U(P Q) ror the above mentioned

re.ndom walk going once from P to point Q , We mean in general the

infinite pum of all these probabilitiee,
v(P; @)= 2 Es (P Q)

which is therefore for interior points P and Q the sum of all quariti-

ties of substance which have psssed the point () at different moments

10 We shall prove their convergence shortly.
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of time. Therefore the expectation value 1 will be agsigned for reach-

ing point Q . For boundary values thls expectatlon is equal to zero,
Denoting the quantity srriving at & boundary point R in

exactly n steps by Fh( P;R), the probability w( P, R) is thus

represénted by the infinite sum
L L
w(p;R)= Z FplFiR)
» V=0 . .
ail of whose members are positive , and whose partial sums can never
be greater than one, because the substance arriving at the boundary
will make up only a part of the origimil quantity of substance. Bub

with this the convergence of the series is gusranteed.

One can easily see that the probability £,(P;Q), i.e., the

qqantity-of substance grriving at a point Q after exactl'y 1) bteps ’

tends toward zero with inereasing n. For if..Q is a point from which
a boundary point R will be reached in exactly W steps, and if we
heve E h( P;Q)>et >0 , then after @ steps et least the amount

A4 arrives at this boundary point K ; but, becsuse of the conver-

gence of the sum 2 Fo- (P ;R), the quantity of substance

. Dgo .
arriving at the boundary point R tends toward zero with time, and .

‘the value of E n(P;Q) itse_lf must»thex‘efprd?l’ép tend toward zero
with increasing w-; i.e., the prq’babili"t’f,". of an iﬁ?ifinitely long path
repaining in the 1nterior is zeroH. ‘ | |

From this it follows that the whole quanﬁity of substance must
finally arrive at thé boundary; in other words, the sum extended over
all bdundg.ry points R is ) o
%Ew( P;R)=1.
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We still have to prove the convergence of the infinite serie

for mathematical expectation v ( P;Q),
@
v(P;Q)= ,;Zf, Ey(P;i@).

For this purpose we ;iotice that the quantities E"( P;Q)

satiafy the f‘nl._cwin relation

(P; Q) = ;‘;{EH(P;Q;) + E,(P;Qx)

Eh-ﬂ

+ E.»‘(P;'Qa)'*eh(po’@‘l)}v' (“»')"_

where & , o @ 4 8re the four neighboring points of the interior

point @ . That is, the quantity of substance arriving af‘ter Rt

gteps at point Q is one fourth of the amount of aubatance reaching

‘ the four neighboring points of Q aftar n eteps. If one of the

neighvoring points of Q isa boundary point, e.g., Q‘s R , then

-there follows that no quantity of substance- flaws rrom ‘this bounda.ry

point to Q » since in.the expression we have net E.‘ (P;R) equal to
zero, Furthermore for sn interior point E (P Pi= l ) and of -

“course B, (P;Q)=0.

From these relations ve obtain for the partial sums
v, °;@)= i)z Eg‘CP;Q)'
=0

the equations Coo

Ve (P1RI= £ (7,000 + %0 (P10, ¥ V5 (P11 V(P 00)}

P
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17 P aoes not coincide with Q ; otherwise we have

Ve (P5 P) = I+ -4'-{'\1;,‘(?; P)+ V(PR ) +V, (P Py) + Vi (P P4)} )

s bi e., the expectation of a particle coming back to its starting point

is composed of the expectation of reaching the point P Asain on & non=-

| _disappearins path, namely 4§'V,,(P P) + G, (P: P )+ "'..(P, Ps) + v, (P P4)}

and from the expectation unity, which expresses the fact that the whole

substance was origina]_ly preaent at this point.

Therefore the quantities - ‘V‘“ (P; Q) aa.tisfy the follow.tng g

11

differenee equat :Lons : g

Av'.,uw) = h,F. (P,Q) |f~ P*Q

Av.,(P Q)== % (E (P,Q) l),‘s P Q

B

"'_Here Vi ( P Q ) 1s equal to zero if @ is a boundary point.

1. In this "eue" the A -operation is related to the variable point @ .

This equation may be interpreted as a type of-heat conduction

equation. Namely, if one considers the fumction Va(P;Q) as a function
. of time t which is proportional to N so that t = n% and AL (P

aw(P;Q;t )= v (t), instead of s a function of the index h as in
the above representation, we can then vrite the above equations in the

following form:

AVCH'- 4}": 'v(t+13c v () “{.,,. P¢Q’
B ) '.—,__4"; (".“"f);"‘*) -() for P=Q.

For the limiting process of & similar difference equation to a parsbolic
differential equetion see Part IT, §6, p. 55.
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The solutica of this boundary value problem is, as already

demonstrated earlier, unique;l.y defined for any right-hand side (see

- P. 10) and depends continuously on the right-hand side. Now since

the values of E “(.P ; @) tend tovard zero, therefore the solutions

Vi (P; @) converge toward the solutions W ( P;Q) of the difference

CBv(PiQ)=o0 , & P#Q ,

av(PQ). —'-4‘;;", i P=Q,

[

with the boundary values Ar (P ; R Y= 0
Therefore ve see that the mathematical. expectation w(P;Q)
nx:l.ats and is nothlns more tha.n the Green's function K(P; Q@) belong~

:lng to the difference equation A‘KﬂO ut supplied with the factor

b, The symetry of the Green's function K(P Q)= K(Q P) 1s en

immediate cor‘aequence of the symmetry of ‘the values “( P;Q), with

.. wbose help it was defined

. The probability w( P R) satisfies the relation 5 )
w(P R) = .-iw(p,,mw(rl,nnww,,n)+w(P4,R)}

with respsct to P , and therefore also the difference equation

Aw =0 )
Since P‘ , Pz , 3 , P4 are the four ﬁeighboring points of the

interior point P., therefore each path from P to R must pass through

one of these four points, and each of the four path directions is

equally probable, Further, the probability of golng from one boundary




R

point R to another R’ is zero,w(x , E‘)=O , and if the two points
R and Rlcoincide, we have W( R,R)= | . Therefore w(P;R) is the
solution of the boundary value problem AW =0, where the boundary
value 1 is prescribed at the houndary point R and thé v;lue 0 1is

prescribed at all other points of the fomdary. The solution.of the

“boundary value problem for ﬁrbitrn‘ry boundary velues % ( R“)btne‘n has

simply the form ® ( P )=;w( P;R)® (R), vhich 18 to be summed

over all boundary points R . 12 1f we here substitute for W the function

'uﬂl , we thus again obtain the relation \- 2 w( P R).

The present interpretation of Green's function as expectation

permlts further properties to ve :meediately recognized, We »-mention

only the fact that the Green 8 function increasea if one changes from
the region G to one which conta.ins G asa partial region, for then

the .nuzber N of the possible grid paths leading from one point P to

- another wiﬁhout touching the boundar}" also increases,

Naturally for more thaen. two independent variables corréapon‘ding
relations hold. We satisfy ourse_lvés with the observation th.at other
elliptic difference aquations permit a similaf pfobebtlity ipterpretan"
tion. | - |

]Zf one goesp through the limiting process to vanishing meph width,

which is easy to perform by the methods ¢f the following paramph

. then Ureen's function for the grid changes to within & numeriecsl factor

e Ome can easily see that the probability w(P ;R ) of reaching
the boundary ig the boundary expression R (K ( P;Q)) vritten with re-

, 8pect to @ with the Oreen's function K (P;Q), by identifying w (%, y)
" in Green's formula (5) with w( P, Q) snd -v( X,y) vith v (P, Q).
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to the Green's function of the potential equation;. a similar relation
exists between the expression h"'w(P;R) and the normal derivative of
Green'é.function at the boundary of the region. In this vay the
Green's funcyiOn of the potential equation, for exaﬁple, could be |

1nterpreted as the specific mathematical expectation of going from

.'one point to another without tnuching the boundary. 13

After the limiting process from the grid to the continuum, ‘the

' influence of the prescribed grid directions of the random walk vanishes. ’

This fact 1s of importance when one undertakes the 1imiting process

with & more general random walk problem“without prescribed d;re:t;ons;'

end is in principle.un interesting,problem; @bwever it exceeds the
seope of this discussion, but is one to which we hope to iaturn on

another oc¢casion.

§ . Limiting Process to the Solution of the Differential Equetion

1. 'ggg Boundary Value Problem of PotentialAThedry. In carrying

cut the limiting process for the solutioﬁ of the difference eqnhtion
problems to the solution of the corresponding dirrerential equations,
ve will not seek the greatest poaaibla generallity in tne formulation
with respect to ‘the boundary and the boundary values themselvea,.in‘

‘ _ ‘ - .
order to maka the characteristics of our‘method clearer.l“ Accordingly

15 Thereby the area of s surface is assigned as the expectation of
reaehing the surfhce element,

" 1h

It might be remarked thal the extension of our method to more
generel boundaries and prescribed boundary values in no way gives rise
to fundemental difficulties.

?-v,v‘._ USSR S
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we assume that a simply connected region G is given in the plane,
whose boundary conelsts of a finite pumber of arcs having continuous
tangents. In a region containing (G in its interior let there be
given a c‘ontinuous function f (x, g) having continuous partial
derivatives of fﬁ.z_.‘st and second order. For the grid domain G h?
corresi}ondiﬁg to'_thei mesh width h and to the region & s let the
boundary value préblemio.f the difference equ&tio‘n Au=o0 be
solved with the same boundary values which are assumed by the
function £ (x,y) at the boundary points. of Gh; call this solu-
tion % h( X, Y ); We wigh to prove thet with vanishing mesh width
hkthe‘ grid function H h converges toward the solution U of the
Boundary value problem of the parbisl differential equation

‘b‘%/bx +9"Hv/3y =0 for the region G, vhere the boundary values

- for the regxon G axc again provided by those values which the

) _ function £(x, g) essumes on the boundary of G ., Furthermore we

shall show that for every reglon lying antirely in the interior of

G the difference quotients of W, of srbitrary order converge

: unifomly toward the correaponding pariial ditferential quotients

of the limiting function u(x,y)
In carrying t.hrough the proof of convergence it is convenient

to replace the requirement that W (x ,y ) assumes the boundary values

by the following vesker condition: If Sf is that oundary strip of

the peglion G whose points ave at & distance lesc then ¢ from tt{e

B
M

NP TR

o
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boundary, then the integral

+ [ cu-£)%dxdy

tends toward zero with decreas‘ing r .15

Our proof of convergence depénda upon tﬁe facﬁ that for every
subregion G* 1ying entirely within the interior of the reéion G,
the function %%, 5) aud evafy-difi‘erejnc'e“-'quotieﬁt‘r_emaixié’ bounded
wilth decreasing h end are "equifcoﬁf;inuous" in..the~:t‘olloving éense:

There ‘exists for each of these functions W h( X, Y)a quantity & (€ )

dgpendent only on the region and not on h such that

e .'W"I(P)_,: w;‘_(’p')'f < € ;

When the grid point Piand P, of the grid region .G \ e in the glven *
A i : S

' éubrégion, and are at a distance less than & (€ ) from one &nother,

" Once we have proved the asasrted equi-continuity then we can

melect by known methods A subsequsnce of our functions W), in such

& way that, togsther with its difference quotients of every order, it

converges uniformly in every subregion G* to_wésrd the limiting function

v Note that dur weaker boundury value rsquirement actually provides
the unigue characterization of the solution, as follows from a theorem
which Is easy to prove; If, for a function aetisfying the differentlal
equation @*%/ax% + 3% /dy* = 0 in the interior of G, the above form of

the boundary condition is satisfied vith £( X;4)=0, and if
A If((’“/?*’ +(Wu/?y) ) d!d'j exists, then U (X,Y ) is identically zero,

(See Courent, "ﬁber die Ldsungen der Diff, GL, der Physik", Msth, Annalen,
85, especially pp. 296 ff,) o -

.In the nase of two independent variables the faet that these bourid-
ary values are sctuslly taken on can be concluded from our weaker require-
ment; in the case of more varisbles one cannot eéxpect the corresponding
result in general, because on the boundary there may be exceptionsl points
gt . which boundary values need not be assumed, while for the weaker require-
ment & solution still exists. '
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(X, y4) or its differential quotients, respectively. The limiting

function possesses Vco_rrespcnding derivatives of erbitrarily high order

ir each interior subregion G* of G , and there satisfies the partial

. 2 *
differential equation 9‘“ /ax +ou / 3"’ =0, If wve then show that

it satisfies the boundary condiv“tions ; We recognize it in the solution

of our boundary value problem for the region (3. Since this solution

is uniquely detemined then 1t is m::ther ghown that not only & sub-

sequence of the functions uk but that this sequence of functions

itself also pomsesses the usserted convergenae prdperty. :

The--gqui-continuity"of our quantities follows from the démon-

stration of the following results:

1, As h decreases the sums

PEE A hzz(uuw)

Gy

2. If wz “"k satisfiea the differamce equatiou Aw =20 in E

a- grid regicm Gh s and if w:l.th decreasing h the sum

S Zz_ wt ,

extended over a grid region Gk comuponding to & subregion c*

ot G 1s ‘bounded, then for every fixed eu‘bregion G™ lying entirely

in the interior of G the sum

hzgé('w rwy)

16 Here and when later convenient we shall: drop the submeript h
from grid functions,
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éxtended over tur corresronditg er.d ragion 65;: remeins bounded
with decreasing h.

Together with 1, it rollows from this that, since all of the
q{i‘fferenc_e quotients W of the function | setisty the difference

ei;quat,ion Aw 20, each of the sums

- R Z% w2

"3,.‘ From the boundedness of these sums there follows finally
the bounded.nesa and equi-continuity of all the dirference quotients

th«:msel ves .

2. ?roof oi‘ the Lemmas. The proof of theorem 1. follows from -

the :Eaet ’oha.‘b the function values uh are themaelves bound.ed Since »

the largest and sma.lle&t value of the funetion vill be assumed on the

boundary” it tnerei'ore tends toward. prescribed finite values, The

' 2 .

bounded.neu of ‘the sum h 2:‘. (ﬂg + u9 ) .is an immediate result
“

of the- min:tmun property of our grid function formla.ted in sa, 2,

h Z‘Z (‘“'x ‘”*y )‘S ‘1" ZGZ (Fe "“F; )
‘ 3

eert;ainly holda. Thc sum on the right converges with decreasing mesh
oy

S We remark explicitly that with regard to the application of the
method to other differential equations, we need not use this condition,

In this- eonnection we could use the inequality (15) or employ an alterna-

tive method. (Translator's noteé: see Coursnt and Hilbert, Methoden der
mathematischen Physik VoL 1, Chapt. III, 3, "Alternative tO the Theory
of Integra of Integral Equetions'), ,

a8 Sl o Dl )
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‘2
L
width toward the integral gg{ "féx ('—é-y) ]dx &j ,» which we have

agsumed to exlst.

e

In order to prove the lemmas formulsted under 2, we consider

the quadratic sum =~ . |

. 2 i 12 2
h‘iﬂi (v + we + Wy +wg ),
@

vhere the sum is to extend over all interior poih_ts of a square Q. ‘

' (éee Fig. 1), We designate the function values on the outer i:oundary . l

Qe

_ Fig. 1.
Green's Formula ylelds |

hii(w +w;+w +W~) z(w -wl)s Zw-Zw

where the summation on the right is to extend over the two outer
boundary lines §, and §, , and where ‘W, and W, refer to neighboring

points. We now consider a set of concentric squares Qo ’ Q‘ s Qz N

"~
iee QN with boundaries S, s S‘ ) ves s .‘.\" each of which arisea




-

. ve mxd that

from the previous one In such a way that the border of nearest
neighboring. points is added. (See Fig. 1.) To each of these sguares
we apply the appraisal (8) and notice that

2 Zi(wx g b EE(WW—*‘% swy )
1T Ty

holds for K .}l + If we add the series of h inequalities

2 W 22 (w,f-rwf‘) €S w- > wh (ogk< n),

ve o'btain

2nh’ ZZ(wxw‘)s Zw S:w sz

Sn

' 'I.'h:la inequa.lity we sum from n=| to n.sN + One thus obtains

NRES +wl) g S5 w,

in which the sum ori the right extends over the enbire aquare Q“ .

By reduc'bian of the mesh wldth ve nov let the squares Q. end

QN tend towaz‘d two fixed concentric squares ly.tng in the interior
ot G md a dilta.nce 0. ‘spart, 80 that Nh converges toward a nnd

"

_h‘zzmw,)sh— s_".s:w

" holds independently of the mesh width,

Phis inequality -« for sufficiently small mesh width -- holds
of course not only for the two squares @, and Q,, but, with

another constant @, , for any two aubregions of {5 such that one is

(9)

?... el Bl
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contained entirely within the other, Therefore the theorem of 2, is
proved, 18 |

In order to prove the third result, that in each interior sub-
region the function u,ka\nd all of its difference quotients Wh
remaih bounded snd equi-continuous with the refinement of the mesh
width? we consider a rectangle R with corner points P, , Q, ’ P , @

{sea Fig. 2), whose sides ?. Q, and PQ are parallel to the X -axis

-and have the length & .

2 P, _®

a R'z-

Q@ b Q b Q,
| Fig. 2

We start with the relstion ) .
W(Qo) "“'(Po hzwx "'h ZE wxg

and with the inequality which follows direetly

| w@e)- w(?.)\shzmuh Zi !wx,l o

18 If we do not assume that AW=O ’ then in place of the inequality

(9) we find | ‘ |
K 25_ (v +wy ) S ¢ b 33 w e h Z.Z (aw)” (10)
for suitable constants €y and cz 1ndependent of h and where G-H

lies entirely in the interior of the region G s which in turn 1s con-
tained in the interior of (3.
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We then let the side PQ of the rectangle vary between an initial line

P‘ Q, a distence b from poQo snd a final line Pz Qz a distance

2b from P, Qo , and we sum the corresponding (_b&...{. {) inequelitles (11).

Thus we obtain the result
!’l EE‘WH +‘1 ZEJ

in which we extend the sumation over the entire rectangle Rz

]wcp.) w (@) €

Po @ Pz Qz . From Schwarz's inequality there follows

|wit)-vcco| <  Vzab VREEWE +Yzek VREE
' " BT Rz

Sincé by asswipllon the sums which occur here mul.tipi‘ied by hz'
remain bounded, it follows that the difference |W( Py )-w (Qs)] .
tends to zero with the distahc.e a. , independently of the mesh size

gince we can fix b for each subregion. G¥of G. The equi-continuity

vof Wﬂ ‘W‘s in ‘c.he ”-diref-tion is thus proved. Correspondingly one
may prove the same :t‘or the ¥ -direction, and hence for each interior
 subregion G* of G . The boundedness of the function Wy i 6*

~ follows finally rrom its equi-continuity a.nd rrom the boundzdness of

REgwh .

With thig proof one then assurea the exiatence of o subnequenee

(12).

of functions 44 vhich converges toward a .'Limiting mnction w( x»,g\)‘, o

and which does a‘o u.nifbrmly together with all its difference quetients

in the sense discuased abhove for’every interior subregion of (3. This

1imiting function MU ( X, Y ) has continuous partial differential quotients
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of arbitrary order throughout{y , and there satisfies the partial

differential equation of the potential

2
gfjﬁ 4-§L1£ =0,
2x2  dy?

5. The Boundary Condition. To prove that the soluticn satis-

fles the previously stated boundary condition, we next show that for
every grid function 4r ve have the inequelity

RSES At ARKSS (viev)) 4 arh%:"'v‘, (13)
h h

Sr.h ) : Sl.'

where . 's",h dezignates that port of the grid region G which lies

inside & boundsry strip . This boundary strip (see p. 25)
. r e

consists of all points of (3 whose distance from the boundary ig less o

than b ; it is coxifipe_d between r‘ and_e. curve P - Turthermore A

and B are constaunts dependent only on the region 6 s 8nd not on the o

mesh size R nor on the function V.

Fig. 3.

o i P,




In order to prc;m the above inequality we divide the boundary
r of G inﬁo & finite munber .of gectlons, for which the angle between
the tangent é.nd»either the_~x -;a.xit; or the y -axie stays above some
posltive value (such ag 506). In illusﬁra‘biqn let ¥ be such a section
of . P which is ra'bher steeply inclined to the X -axis. (See Fig. 1};)
Lines para.llel to the X -axis interaecting the end péints of the
section ¥ will eut a section § » “from the ﬁeighboring curve Pr ’

snd will define together with and a reglon S, of the boundary
r r

" strip S ' 'I‘hat part of the grid region G which 18 contained tn
r h

the s*rip S i called sr ko and the corresponding purt Df the
boundary rh is called ;"h . |
. We now imagine that a line parallel to thé X -axis 1s drawn

through & grid point Py of § ). This line will hit the boundary

’ rh at a point P" » Thet particuler section of this line which lies

in S.,'h wa shall call Pt‘,h . Certéinl&"the.seevtion will have a

1ength smaller thean €V ', gince' r is the largest perpendi-cular"dia- ;

" tance of & poin't on S".‘ trom 7. Thue the oonetaﬁt ‘C. depends 6nly

on the smallest angle which the tansent to k makes with the x -axis.

The foll owing relation holds Yetween tho values of r at the

‘ point P,‘ and its value at the point Pﬁ

v (Py) = 'V(Ph)“‘ h% "-"x B

from vhioh, ‘by squaring and uaing Schwarz's inequality, one finds

»v(?,,) S 2~<F Y zcrhzvg ,
P\-h
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By summing with respect to Ph in the X ~direction we obtain
hS vig 2er v(Fh)2+ 2¢" P h S vy
Summing once more in the Y -direction yields the r‘:;.ation
hZZf\r ZLFZ‘V(Ph) +2c’r’h22'v', , (14)

and in or&er to find the desired inequality (13) from this one nesds

only to set up the corresponding expression for the other parts ¥ of

T, and then to add the two expressions,l?

v = My - F

We next set

o that 'V'h.,vanishes on the bbundary P\\ . Then, since"\ E.z (’Vx )

remains bounded for deorensing h we find from (1.3) h

-t v .
' s vt $ hr, | (16)
Seh- ‘
wvhere )( is a conastant independent of both the function 1 and the

mesh width. Ii‘ we extend the summa'bion on the left hand side not

over the entire boundary strip sr”h but rather over the difference .

“of two such strips SFh. SQ, , then the inequality (16) is still

va'l.id with the same constant ‘X, and ve can carry ouf L L limi‘bing ‘

process for vanishing mesh width. F‘rom the mequality (16), there

19 The same soxrt of considerations ‘whieh led to the proof of the .
inequality (13) also yields the inequality

h’zzv ét‘—th 10, h'EEWx i), 09

where the constants C‘ and cz depend only on the region & and
not on the mesh width.
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then results

—:;K vidxdy € wr, v = w-f.

Sr"sq
If we now let the smaller boundary strip SQ approach the boundary,
then we find the following Inequality:

) l rr LN | a ! ff - - tz .

+ | vidxdy = - u-¥) dxdy € wrr

v ) xdy = 1 |j (u-¥) dxdy ,

. 50- Sy

which just states that the limiting function 4@ patisfies the boundary

conditions which we have specified.

L, ﬂ'E.'E lica‘bilitz 9_3"_ the Method to other Problems. Cur method

is essentially based on the inequality (10) stated in the above lemma,=0

because from it the last two theorems of pages 26-7 follow. Inequality
(10) in no way makgs use of special solutio_ns or other special proper=
ties of our d;i"ferenceb expressions ,“ and may therefore be immediately

extended to the case of arbitrarily many independent variables, or to

' J N %
-the eigenvalue problem of the differential equation 3‘“/9;{"{- P oy

+ AU=0, and wve .thereby obtain exactly the same results concerning

cﬂqn‘v'ergance propertiés ap dbove.zl With some mdiﬁcations ?which are

easily made the method can be extended to linear differential equations -
o other sorts, particularly to those with non-constant coefficients. '

The esmsential distinction consists only in the proofs of the buunddd:iebs

20 " Concerning the application of ‘correﬂponding» integ'rad, jnequali-
ties, see K. Friedrichs, "Die Rend- und Eigenwertprcobleme mus der
Theorie der elastischen Platten", Math. Annslen, 98, p. 222.

2l Tt is thus proved at the same time that each solution of such
a differential equation has derivatives of all orders,

[
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of N &e ) lodeed, this sum 1s not bounded sows for linear
problems of this type. But when this sum is unbounded, it can in
fact be shown that the general boundary value problem for the differen~
tial equation concerned has no solution, and that therefore in this
case non=vanishing solutionsg of the associaﬁed homoggneou’a problen,

1.6., eigen-:“unctionsv, ‘exist.22

5. The Boundary Value Problem of AA#=0 . 1n order to show

that the method can-also be applied in the case of differential equa-
tions of higher order, we consider in the following the boundery value

probl.eni ot the differential equation

P g M L,
oxf " iyt oyf

We seek a solution of this partisl differential equation in
ourfz"”egiéh G, for which the function values and th‘éir.first deriva-

tives are prescribed on fhe boundary; these values are themselves

~ defiped on the boundary by & previdusly..given funcﬁon £ (3 N g ).‘

In this case we assume as before (p. 2k) that £(X,Y )'.’:I,B,eontinuous
with firet and second de;'ivativ'es_ in the plane reglon which conteins
the region B | o

We replace our differantial equation with the problem of

solving the difference equation AA%=0 for the grid region 6 5

22 gee Courant-Hilbert, Methoden der mathemstischen Fhysik, 1,
Chep. III, 3, where the theory of integral equations is discussed
with the aid of a corrsaponding alternative principle, See also the.

. "G8ttingen diesertation of W. v, Koppenfels (to appear).
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where the function 44 assumes the same values as the previously given

' (!
£ (x 'Y ) &t the points of the boundary line Fh+ f‘h . Trom § 2 we
know that the boundary value problem for G h is solvable in one and only

one way., With the. refinement of the mesh width h we shall show that in

each interior sub-reglon of G this solution oonverges toward the solution

of our d.l.;u;erem::laJ. equation, with a.ll difference quotients approaching

their reapective differential quotients. .

For this purpose we first notice that for the solution - 14_ uk of

our diﬁ‘e:ence problem the: sum
. 2
]
h 22 (tyx * 21"*3 tUyy )
is bounded with decreasing mesh width. For according to the minimum

property of the solutilon of our aifference problem (see p, 12), this sum

is never larger than the corresponding sum

K £ ($ +2F0y + Fuy ),

and thig 1s convergent with the refinement of the mesh wioth teward the-

H('aa:; zgxz’ ?;g,‘_)dxalg

integral

which exists according to our e.aaumpﬁigns.
From the boundedness of the sum
2
h EZ (uxx+2“t5 + u'!! )

N
there imeaiately follows the 'bou.ndedness of k 22 (A“) , 88 vel

| a8 of h. 22 (‘Kx + Uy ) and - hz EE fu,' ' For arbitrary

6y

R
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tur there exists the inequality
KSS wiseh ZZ(Wx”' )+chZW (15)
Gy

(see (15) p. 34). If one subatitutea the first difference quotients of

. W into this inequality for the function W, and makes use of the sub-

regions of Gh which are defined with these difference quotients, there

results the additional meqimlity

2
uzzou f)e ek zz(w +2ug sug )4 ch Z (o),
vhere the constant € again does not depend upon the :E\mction or the mesh
width, We now apply these inequalities with W= ‘uh»_.a‘nd recall in this
1 v
case the boundedness of the sums over [ 4 I')  on the right hand side;
the boundary sums converge by definition toward the corresponding

integrais forﬁgd with § (X,y). therefore from the bo{md.édneas of
W 2'2; (“xx"z“ry + “99 )
there follows 'bhe boundnadnels of »
> (upeny) and s 25: u®
We nov substit;ute successively for’w the axpresaiona Au. ’ Au, s :

Aug, Au,m s ++o in the inequality

hZ};(w,-rw‘) seck ZS_‘_W +eh” ZZ (6w)® (10)

(aea Pe 30 ), where G*isa subregion of G containing G*"" in its interior,
all of which satisfy the equation Aw-o + It then follows that for all

interior au‘bregions‘ G¥* of G, the sums

h* ZG*E (wi+w?®) |
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2 2 a
hzzz (Au;utw.;) ) h ZE (A'u-xx +Aux9 ), srry
6* G*
are bounded, together with the sums

PSS W', K ES (wieug),

end . h h

h EE (A“)

which have previocusly been ahown to be bounded. ‘
Finally we aubstitute Buccessively for W the i\mctions Uyy -

u,,, y %yy s ’Mxm‘ e in the inequality (10), .

hﬂzzmw) e, R 22 (Au,,,) ey

vhich rematn bounded as ,just proved We than recognize that for all

subregions the sums

h* ZZ ('“mr + “xxy) h* %g (.“:Qx*'"g:yy‘)p-u_ |

also remsin bounded

From this fact we conclude as on pp. 30 If, that we may choose &

~ partisl sequence from'our set of grid 'mnc‘tions fqr-vﬁidhﬂ all differencé‘ _

_quotients converge uniformly in each interior subregion of G tovard a

continucus limiting function in the 1nferior o G, which are their’
respective differential quotientn. B v i

We atill have to shov that this limiting funetion, which obviouslv
sstiofics the differential equaulun AAd =0, in addition fuifills the

prescribed boundary conditions, In this case we satisfy ourselves ag
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aaqpation during refinement of the mesh width of a basic grid. ) . v : 1

In this case wa rastrict oursélves to the 1nit;&1 value problem'in : o

YiTe

above by expressing the boundary conditions in the form=2

[ ety o, JC8-2T(5 -5 ot e

'l‘hag the limiting function satiafies these conditions may be shown by
applying the sawe procedure used pz_'eviously on p. 34 for the funetion
% a.d its first difference quotients, '

| Oon accqunt of the unique determination of the solution in our
boundnry value problem, we can now recognize in addition that the indi-
cated convergence prbper&ias are'p§ssesaed not only by the'selected‘

partiél sequence but the function sequence % itself.

II. THE RYPERBOLIC CASE

§ 1. fhe Equation of the Vibrating String - ' S
Ip this secqu part of thé erticle we are concerned with initial

value problems of hyperbolic linear differsntial eﬁuatians; and we shall
shov that. under certain assumptions the solutions of the corresponding

dirferenda equations convarge tovard'the solutioné of the differentiaml

We can most nimply demonstrate the present relations with the

obvioua example of the wave equation
Pu 2%
Tit ot

=0, | - (1)

23 It 1s not difficult to show that boundary values for the funetion
and its derivatives are sufficient. BSee the corresponding observations
by K. Friedricns, loc¢. cit.
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which the values of the funetion 44 and its derivatives on the siraight
line t=0 are glven,

To obtein the corresponding difference equation we construct a
uniform square grid of mesh width h, in the X., t -plane. We subatitute
for the differential equation (1) the difference equation

Ugg ™ Yux =%
with the notatlons of pp. 3~k, If we choose ‘yﬁa grid pc;int Po , .'bhé
difference equation in this case connects the value of the funetion U
at this point. with the values at the four neighboring points, If we
again denote the four heighboring Qalue)s by the four indiges 1, 2, 3, k4

(see fig, 5), the difference .equation takes the éimple form

In this case the value of the function 44 at the point P itself does

not appear in the aquati,on.
We tmagiue the grid to be divided :lnto two dirfarent partia.l

grids, as indicated in fig. 5 with cireles and erogses, 'I.‘he difference

' equation then connects with one another only the vaiues of the mncticn -

e
1 g‘ %- P ¢
) * ®
3 ¢ ® “ ]
o - o + L [ . . ]
X . ’ OQ
+ & + o

- N

i
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in esch of the partial gridé. We therefore restrict our;elves to one
of these two partiml grids, As inltial conditions we have here to
prescribe the values of the function M on the two grid rowa t=0 and
t=h . Next we state explicitly the solution of this initisl value
problem; 1.e., we expreés the value of the solution at some point s in
terms of the sbecified values on the two initial yows., Ome can imedi
ateiy see that the value at a point‘ on ﬁhel row t=2h is uniquely
defined, merely through the three valuee connected with 1t on the first
tﬁo rovs. The value at & point on the fourth row is uniqueiy defined
by the value of the solution at three fixed points of the second ahd '

third rows, snd therefore by certain values on the firbt tve rows. In

general, a certain domain of dapendence on the first two rows will belong ’

to a point S 3 one ean find it by drawing the unm, x+t = const. and

X-t = const, ’ohrough the point §, until they meet the second rév in

the pointe « and Q (aee f.‘is. 6), We t.hue asll the triangle SGQ the

d.etemination triangle, ‘because w:lthin it al.‘l. % -values do not change

as soon as they are" Speciﬁed on the firat two rows. We call the lateral

- l_i.nes of the triangle detemination lines,

Denoting now the d.ifferences of ﬂ. along the daternimtion lines

'by 1«. nnd u, or more precisely

. . "
»u': ,*u4 ) u:_"‘ ul ‘—"“'2 '
» , | o
R, = Hpm Uy, Uy > Mg Uy,
the difference equation takes the form

e

’ .
U, = ¥,

h
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sion of the golution of the wave equation (1) witn tb_o.:lniti@i velues

~U43a

This means that along a determination line the differences in the other
determination direction are constant, and therefore equal to one of the
predetermined differences between two points of the first two rows. On
the other hand, the difference us -ud is a sum over the differences

N
& along the determination line Sof , so that we obtain, by applicetion

of the pravious remark, the fipnal formula

, & , o
us=ud+§u _— ¢ )
t o . '

in which the motation is éasily understood,

Now we let the mesh width h tend toward zero, whereby the pre-

_ viouél‘y mentioned values on the_ second or firat rew converge un,ifbrmly

toward a twice continuously differentiable function § (X ), and the.
ol . .

difference quotients r— tend toward a continuous differentlable
Va .

function g (X). In this case the right side of (3) obviously transforms’

uniformly to the expression

§x-t) +

x+t

B
vz ) ¢

1§ converges toward the point (€, X ), This is ,t.h’h vell mow exres-

W

w(x,0)=f(x)ema du/t(x,0)= $'(X)+VE 9 (X). Tt 1s

thersfore shown that the solutions of our difference equstion problem

converge toward the solution of the diffeventisl equation problem with

j-amd; P}

decreasing mesh width, if we let the initial valuss convergs in the above

prescribed manner,
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§ 2. On the Influence of the Selection of the Grid

The Regions of Dependence for Difference and Differential Equation

The following thoughte are obvious in view of the considerations
of s 1, Just as only a certein part of the initial values sre decisive
for the solution of a linear hyperbolié differential equation at a poiht
S, namely that "reglon of dependence” oub oub vy chab;r-ac Leristics through
S, thei’a 18 likewise in the solution of a difference equation at the

pcint' S & certain dependence region which one obtains by drewing the

‘determination iinea from point S In fl the Airections of the determi~

nation lines of the difference equation coinclded with the directions of

. the characteristics of the differential equation, 80 that the dependence

~ regions also agree in the limit, Thd.s ract, hovever, depended essentinlly

upon the orientation of the tgr:l.d in the (x ,'t )-plme and vas baged on
the fact that we had chosen a squere grid. We now take as & besis s

~ geners) rectangula'r grid whoge mesh width in the t ~direction (tino-nuh) _
. equals h and in the X -direction (spaca-nesh) is equll 'bo X.h s With

eonstant )t : 'rhe ‘rogion of depcndanue of the diffnmnce emution

Mg - ® & 20 for this grid vill be completely in the interior of
‘ T A%, (2Lt
~ the region of dependence of the differential equation ‘3"“/ "t "'9_“ /3: BO,. ’

6r_vii}l conf.a,r.m'the latter in ite interior, according as- X <1 or J¢_>'l v

From this follows a remarkable fact: In the cane )¢ <} as the
mesh width h decreases toward zero, the solution of the difference squa-
tion camnot converge in genersl tovard the solution of the differentisl

equation, For if in the wave equation (1), one changes the initial values

b B s 0§ DS

T S L
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Fig. 7 ‘
of the solution of the differential equation in the neit;hborhpod of the
end pointa of and Q of the ragion"qt'depandence (see fig, 7), formmla
(h)‘showa that the sol;\m\xtion 1tself aleo changes at the polnt (‘x , ).

But for the solutiones of‘me dif;'rer;nce equation at the point 8 the

 initial v'.ulues'at the points & and Q are 1rrelevant, becauue thay are

outside of the region of dependence of the differeneo equation. = We -

shall prove 'bhat thare is convergence in the case x ?l in § 3. }

this connet.tion gse fig, 9, 1. ke,

' On the other mmd consmer a3 an exanrpla -bhe differential eq,uation
AR S N

Yo Qx'- Byt |
in the apa.tsnl -qoordinetes X, Y and the time coordinate t, and replace
;I.t by the"comaponding difference aquations in = rectangular gr}id.. In
contrast to the case of only two independent variables, it is Dow impoﬁ-
sible to choose the mesh spacing so that the regions of depsandence of the |

difference and differential equations voincide, for the reglon of dependence
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of the difference squation 1s & rectsngile, while that of the differentisl
equation is a circle, Tater we shall select (see § k) the mesh spacing
80 that the region of influence of the difference equatlon contains the
ragion of influence of the differential equation in its interior, &nd ve
shell show thaf convergence then occurs,

- In general the principal result of this section is thét one ean
choose the grid for each linear hyperbolic homogeneous differential esqua=
tion of second order such that the solution of the difference éqpation

converges toward the solution of the differential e.quation as the mesh

width tends toward zero. (In this conmection see §§ 3, 4, 7, 8.)

§ 3. The Pamsage to the Limit for Azbitrary Rectangular Grids

Raxt nov agaln consider the wave equation .

Pu _Pu - | '.(1)
[IE R TR c

- &nd salact a rectangular grid vhoge time msh width is h and whoae

_ space ‘mesh 1 x‘t The correaponding difterence equution is

L(‘M)m-—-("&, -2u +u3) ‘h‘ ('u, 12«, il )ao (6)

whers the :hmiaen denotc the central. point P. a.nd the corners P, Pz )
F ) P+ of an "elewentary rhombus" (ses rig. 8) According & the

S
Ia)
O
i 'l’ . \\-
’ [} [ ¥ )
o . . .
, \\
a4 ¢ O o2 . o,'e o ¢ .
Y b}
. . . ) Py . ra . Py ¢ o\ . .
4 \
3 04’ » s . . - \\e
of
Fig. 8 ' Fig. 9
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equation [ ( W)= 0 we are able to describe the value of the function ¥«

at 8 point § in terms of its values on that portion of the two rows
t=0 and t=h, (see flg. 6, p. 41) obtained by drawing the two
"determination lines" from the point 8§ to the sides of an elementary
rhombus, We assume the initlal vealues are prescribed such that they,
end the firat difference quotlents formed from them, converge uniformly
with decreasing mesh width and with fixed X toward the continuous
prescribed ﬁmctions on the stralght line t=o, 1t is possible to

write an explicit solution of the difference equation in terms of the

- initial values {correaponding to (3) 1;{ §1); but 1t 18 not 80 siinple»

to yerforn mdi’utely the Limiting transition to vanishing ﬁesh width,

We therafore follow another course, which will 8till enable ue to trea‘b

" the general problem 2

We multiply the difference expression L(u) by (U, - Ug) and

write the product under consideration ancording t.o the followine

identities:s . -

_ | “ .
(8- U3 YU, "R g+ U3) = curu.)’“- (Ue-U3),

tﬁ u,)(u,—mﬂ“ )" (u,~ “o) - (“o"ui)

z[(“ “z)"(“u “4) (“z"“ﬂ (“4"“1)]

(M

8y

2t in the followlng compare K, Friedrichs and H. lewy, "foer diec
Eindeutigkeit u,s.w,", Math, Aunalen, 98, (1928), pp, 192 ff., vhere
. the analogous transformations for integrals are used,
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We thus cbtain

2 (4 up)L ) = &, (1= B[V = (645 ]

e

kih‘l [('u ‘“-1) +('u 144) (ﬂ u3) (1(4 ) ], (9)

Fow we aum the produet (9) over sll elementery rhombi of a deters
mination trlangle Sd@ . On the right oide of (9) the sguares of the
differences in two adjacent elementary rhombi nlﬁayﬁ appear with
different signs. They drop out in the sumation when both elcmentary

rhombi belong to the triangle Se @ i therefore only one sum remains on

- the boundary of the trimgle. In this way we obtain the relation

2

WEEare = kg [-RE ]

\

_+h2[ ('")(')2 iGN
-hi[ 2 (1- u’(h)"'n’( ) 0 (%)z] »(15)

Here u and 1«. denote differences along defeminahion directions as in

§1, vhile 44 _,..;ute,s the difference of the functlon values at two

neightoring points connected by & line parallel to the € -axis. The sums

aré to extend over al_l bdtmdary lines conslisting of tuwe p:'.i'a}.le}_. rOWE, 80
that all di:éfereuces 1»,( s 1‘«, 4‘0 occuyr once and only 6pge.

Therefore the right side of (10) disappesrs for a solution of
L(«,):b‘ . fThe sum .ﬁhich ocours over the initisl rows I and II remains

bounded if we allow the mesh width h (with fixed ¥ ) to decrease toward

G




T

zero; in particular it transforms ipto an integral of the given function
on the initial line. Consequently the sums over S¢ and S% in (10)
also remain bounded, It is now that ve must require X 2|, (see page hl)

{
B0 that | - X s non-negative and the boundedness of the individual sums

P }
hE (EY ., RS (Y
Sa sa

follows which we can Imagine to extend over arbiltrary determination lines.

From this we can deriv’e the "equi-continuity” of a sequence of the
grid funztions in all directions of the plane (see first part of ﬁ h);25
because the' values of % are bounded on the initial line, there follows
the axistence of @ :partiai sequence which converges unlformly htoward a
limiting function K (X%, 1),

‘ In e.ddit:Lonb to the function ®, 1ts first and second difference
qu_otients slso satisfy the difference equation L (M)= 0, fThe initial.
values of theseAdifference quotients are expressed by meens of the equa-'
tion L (1¢ = 0 by the first, s»cond and third difference quotients of ‘R-
in vhich only points on the two lnitial rows: I and II appear. We reqpira

that they tend toward continuous limiting functions, i.e., that the given

initial values 4 (X, 0 ), ¢(X,0) are continuous and can be differen~

tiated three ‘and two times with respect to X respectifely.

25 BT S, end 84 are two points separated by the distance & é and
S

if-one connects them with a path formed bty two lines &, § and
the first of which is parsllel toone determination direction and the
second is parallel to the other, then there results the relation .

'“s,"“s,l < |us,"“sl *‘{“s",'#sd

rhz% th(--

Y

cvianbisdbet sk md & 0 LE 2
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_congequently satisfies the differential equation 242

ihe;ly am:uiy” the 4ifference equation

“50-

We can now apply tine above convergence propertles to the first and
seczond difterence quotlents of 4 instead of to W itsell, and we can
therefore chopse a partial sequence sueh that these difference guotients
tend uniformly toward functions which must then be the first or second
derivatives of the limiting function u(* ,t). The limiting ﬁ::rxction U

P ?w
?x* ’
which correaponds to the difference equation L(w)=0 ; it thus describes
the éolution of the initisl valune problem, Since this solution i1s uniquely
determined, each partial sequence of the grid i‘unctibn and ther’ezfore the

sequence iltselfl converges toward the limiting _f\mction".

§ 4. The Wave Equation in Three Variables

We now conéidef the wave equation
2, (1 > A '
ott  xr  2y? : '

end, extend the remarks made in § 2 in connection with the region of

_'depéndence. The region vf dependence of the differential equation (11)

’ 'is the ci_rculér quhe vith ite axis parallel to the 't. ~direction and

vertex angle & , with tana = . . In a rectanmlar grid we accord-

F)

, e ~-U .20, N T

Through thls' equation the function valued 44 are connected with emch
other by the points of an "elementary octahedron", It allows the function
value At & point § to be uniqely expressed by the function values at

certain points of the two initial planes t=0 and tz2h . Ve obtain
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for each point S a determination pyramid which cuts two rhombi from the
two base planes as a domain of dependence,
If we let the mesh width tend toward zero with retention of its

pioportions we can then expect convergence of the sequence of grid func-

ytioms toward the solution of the differential equatlon only whern the

determination pyrainid contains the determination cone of the differential

equation in 'ts interior. The simplest grid with this property will be

" the one whict is placed such thet the determinmtion pyramid touches the

- determin~tion cone from the outside. Our differential equaticn is

chosen such that this occurs ror a cubic rectanguler grid.
In this grid the difference equation (12) assumes the following

form in the notations of figure 10:
N | ' . .
L(w) “’T‘?"(“:.f‘z“o"’“d) - '!';i (“a'z“a"'us)"gn(uz-z“o *_uﬁ) ;5 13)

here, moreover, the function value ¥, at the middle puiht P no longer

enters. The vilues of the solution on the two 1nitial planes are the

val.uea of a continuous funetion, four-times dirrerentiabla with ranpect
o X, » y‘,t AP _ “

For the pmof of convergence we e.y.:ln use the method daveloped.
in § ,'5, forming for the salution of our difference equation the' triple
gum . ' ) -, ‘

'h’ZSE 2t L(w) =0
which extends over all octeh «drel elementd of the determination pyramid

euanating from & pcint § . We recognize on the basis of an aimost /

literal interprc.ation of {he previous conclusion that the values of the
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Fig. 10 o . .

" funetion 4, at the Interior pointe of the __&e'bemination pyramld drop

out, and that cmkly surface sums remaln ov@r the four lateral double

‘surfaces F and over the two in:;tiai planes I, IT of the pyramid,

benoting’ by ﬂ.’ ‘the Qifference betwaen funotion values at two

~ points which are counected b}: an edge of an octqhed.r_al siement, there

reaulta the formula

EZ(V-) ZZ(V«) (k)

which is to be smnmed over all planes containing the differences u , 8O

that each surm difference appears only once.aé 8ince the double sum

26 The grid is chosen such that the difference of W betveen the two

Pplanes F no longer occurs.
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remaing rened over the two initial planes, as it transforms into an
integral peer dnitlal valued, the sum therefore also remsins bounded
over the 'le.tle xmination plénes" F.

Imtes ad of to M itself, let us turn our attention again to the
firat, sewrrn end third difference quotients which satisfy the difference
squation (™ J) mnd their initial values; the initial values are themselves
exPressed%zrymnsahs of (13) by the first through fourth difference guo-
tients fowewied from the valqua on the first twd initial planes, If
ure “"h b e '6&‘ these Aifference quotlents ﬁ'p o the tbird order, we
then know!rf ht the aun. _ht z'_;_‘_ (%,)1 ramaing bhounded over one
determinsic> o Plane F, By _exactly the came consideration which ve:
applied fitrthe first part of s L, 14 rollovs,thét the funntién " andv
its firatmnﬂ.second difference quotiants afe equi-continuous., Therefore
there exiim.sa ssquence of mesh-widths which decremses tovard zero such
that,thbme;euuressiona, vhich are bounded in the beginning, converge
ﬁc;ward conk -imous limiting functions, and. indeed obviously converge-
toﬁard thom gleition of the dif&‘eran‘pi;u équ‘ation incluqing its first end

W - . .
ae.jf:ond detiw-ut dvas , which follows exsetly as in § 3.
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APPENDIX

SUPPLEMENTS AND GENERALIZATIONS

§ 5. Example of a Differential Equation of the First Order
We have geen in SE that under sore circumstances the domain of
depéndence of the differantial equation constitutes only a part of the
domain of dependence of the difference ejuation, and therefore the
influence of the r_emaining_ region drb'ps out in the limit, We can expli-
citly aeméustmte this phenomenon with the emplfe of the first order

Aaiffarential equation 9(( /3f =0 if we substitute for it the difference

CRuy - Uyt wE=O. (15)

Written in the notations of fig, 5 (p. b1) it reads

u, = Uy "'1“4 | '(16) _

: This difference equamcn again connecte only the points of a parbin)

_ grid with one mcther. 'rhe 1nitial value problem consists of lpeeity.!ng

the function 4% as the values 'in * which a continuoua funation £(x)

" aseumés at the pointa b 21& on the row t:-.o

Consider the poinh S on the t -axis at a distance 2|\|\ 1t iu

" ogiy to verify the representation of the solution wat §as

Uy = S L (::“)42.‘ _— Can

2n
g:hz

The sum on the right side tends towerd the valus 9, with refinement of

the mesh width, i.e,, as h-» es , One can conclude this from the contie-

‘duity of ‘c’( % ) and the behavior of the binomial coefficlents with

incressing W . (See the following paragreph, )

]
i
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§ 6. The Equation of Heat Conduction
The difference eguation (16) of § 5 may also be considered an

analogue of a quite different equation, namely the equation of heat

conduction ) .
2 2% -0, , (18)
¢t ox?

In any rectangular grid ithe corresponding difference equation reads
h*

vhere | is the time mesh end b the space mesh. In the Llimit of

L (1)

\ianiihing mesh width the differensm equation maintains its form only

when 1 decreases in yroportion to h « In particular, 1f w2 set

1= h" , the value u; then d;-ops out of the equation and thera“ r,esults\\

the difference equation -
. N a - " : + u . . " N
Come= R, (16)
,.vhoue solution has been given by tonruula (7).

I

ulot) = e (:ﬂ)‘  .<17>~ 

an
t-um 2
A pcint g of tha X -axis m alvays’ dmo'bed. with dqoreasing ach
vidth by the index '

The mesh width is rcilaud_ to the ordinate T of the scurce point by the
equation | S ' L
Zaltst. (e1)
" We shall now emine what re sults from romala (17) when h tends

toward zero, l.e., a8 1]\ tenda toward infinity. By applxration of
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formila (21) we mey write equation (17) in the fomm

4 Vzn 2n .
u(o,'t) = P rﬁ“ﬁ“ﬁ (“"“')'.;21 Zh . (22)

For the coefficlents of Zh;zi = 1&,#(‘5 ) we use the abbrevi-

ation

-

a7 ) = pivE Q*;"V“‘ )

_Here we ghall calculate the Lium-. of this coefficient, which one usually _

determines with the aid of Stirlims's formls, by interpretins the
function 9’."( § ) as & 8ol ‘en oi‘ an ordinary difference equation,

and proceed:!.ng to the limit f.or vunishing msah width h and thus to tha

. differential eguation. Ome finds

27 (9 (3r2h) ‘?u”’) = 9h“’ M

as the dirﬁnnce equation by writing gk(g ) insteed of 9‘245 (§) or

Y+h
-—E(‘Jh(\iﬂh) 95(97) = = (%) m‘

In addition 5"( ¥) satiaﬂas the normelizetion condition

'}_ 9,(8):2h = z\FE‘

This sum is to extend over cm domain of depandance of the dirrerence

aquation, vhich in the limit as ho cecuples the vhols X -axis.

1.

One oan ue by simple considerations that 9" (%) converges

unifomly toward the uolution 9 (X ) of tha difrereu'cial euniOn

9 CX) = - gcx?-% e
wi#h the auxiliary condition |
' )

I gfxzdx :‘ z\ﬁ:' .

- OR

oo




By pi‘oceeding to the limit there then arises from formula (22)
) -%/2 t
i
u (et m,S — e £x)dy
RN AN

the well-known aolution of the equation of heat cohduction.

‘I‘he considerations of this paragraph are directly appliceble to

the case of the diﬂ'erential equation

amemmmpeit

axl 9‘

e'ﬁc. ih more independent variables.

!

4“ % 2’ 31‘1. . = O

§ 7. The General Linesr Homogenous Differential Equation

' of Second Order in the Plane

[

Let us consider the differentiul equstion ) \\
'6.‘.'.’.'.‘.-’3“4-«:%-« Hruw=0. -('éb)\‘

The . eoefﬂcients are twice continuounly dii‘famnﬁin’bla with renpect to
x,t , vhile the initial values on. the straight line t =o are three

“t:lml continummly diffcrmtiablo with renpect: to X . We,rephce the -
- ¢ifferential aquation by the d1fference equation - )

L(«).-x ﬂ(xf) ku-(x,ﬂ+atu¢+e‘“- +m=o (%)

ina er1d with ‘the tine u-h width h and the space mesh width xh,

asuch that in the neighborhood of tb&t past of the ini‘bial line ‘under
conaideration | -~h-~ >€ >0 holds for our constant X ; ‘we choose tho

initial vaiues as 1n §3. (gee p. b,9 ) -

For the convergence proof we apain treneform the sum

RSS2 %% | )
- Sa¢ h

S,
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by application of the identities (7), (8). In addition to the sum {see
(10)) over the boundary of the trisngle S« @ (see fig. 6) there nov
appears a sum over the whole triangle 3 at‘Q , Whose absolute value c¢an

he eatimated ﬁi‘ch the help of the Schwarz inequality as

CREE [N @) @)+,
vhere the constant C doea not d.epm;d on the function U, on the mesh .

width k , or on the point -8 in a ~eriain neighborhood of the initial

line.

Hers we can similarly estmu the value of h 22 ’k- . a8 ,' ‘

CiuZZ(")wrChz_u -

Hhere ‘what hu boan said for G will be w.lid for the conntmﬂ C C,_.27

We thus obtaln sn inequnlity or the rom
L ‘
z (=05 RE N

N [ (- B)E) (a-..)] |
QLS [(“) b @r] e, “,;,,;,.

i - 5u g h

wqm D 15 & fixed constant for m ‘bhe sums over the initiel ltrmlght

lma, for all yo.tntu § and msh vidthe h
o Starting from the initial line ve nov choose ) tna point §er
our trimglo the points §,, 8,, V.iy S,=8 1n turm on & line

paraliel to the 't ~exis., By summation of the inequalities corresponding .

27 For the proof, see the related 1nequaliﬁy at the bottom of p. 49,
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to (25) we obtain the inequality
d 2R ()2
"l %‘s% [2(|" -E') 1'-(-;4(-;;)] o
' . 2 Ngq
FES R R

4

< nhC, zz[ 1,{- #(8)] +akD. o)

s«p

Recalling that one can expreea the ~difference ‘M. or % in terms ot th’a )

two differences u and & difi‘arence 'u or u : reapectively, 1t rollovs ,

that ve aan then reduce ‘the left side of (26) ir ve lubn'bitute tor it

REE [y ﬁ:-)]

Su g

. We now rentrict aurulvea ta a neﬂ.ghborhooa 't & hh c:l' the in:!.'bial lina

dn yhieh

."'h'\C = C >0 ,'

‘no ¥e obtain from (26). e R EE,

e [ ] a*o |

From thia oxpmnon of m mmnen or ’che leﬂ nide of (27), u-,

folJ.ow tron (25) thnt

” %) - h?

48 n;Lso 'bounded from which ’ahm'e touovl eha cqui-contimi‘by of % as

IETY B3
| Instead of applying the inequality (25) to the. mnetion «w itaelr‘
we apply it to the first and aecond differance quotientsw , which also
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satisfy difference equetions whose second-order terms are as in (2h).
In the additional terms derivatives of M which cannot be eﬁcpressed by

can indeed still occur, but the sum of their squares over # redtangﬁlar
area multiplied by h , tan already be assumed to be bounde«d. But in 4
this qne® we may apply to thie ditferema equation for W tne same con- i
eluaiona whieh have been applied earlisr to 4u . Therefore ‘ve cen infer
the equi-eontinuity and boundedneaa of the mnctions k7 and. their first
&nd seacnd d.erivativu ’ whieh themfora posaeu & parb;\al sequonee whien
converg“ unifomly toward the nolt\tion of the initial value problem of
the dirmrential. aquation. !‘mn the uniquenou 1t amin follows that the
hmqtion saque-aaa it seu‘ eonvergu. ¥

)/ In’ tnn case a: oourss ve must uauna that the d.trrerenac quotiqm‘.l
By to the third orda:- convuraa unlmmly fmmrd uant:lxmauu nniting
functiunsee on.and bmmn the initiel rova.

3 a. m mmu m\m Pmblm of an Mbitrnry m.mm
L:Lnnr mmmm Equuion of sacona Orda:' "
We shﬂ.’.l. naw -hov that tho ln‘bhodl devolopea lbovc l:n ldcmu

w som -m mitm v-ma pmbxm of o \rmm-y nmur mmmn

nyperbonu «umthm eqution or seecmd or&or. Ta um cln it ie
tummxm $o ml’oﬂo" ourulm 1;0 thu cug of thr« miabln. The
tmi.n or ‘bhoum nny 'bo iu-ediataly applud to uvem miablu. . One

can euily ue tbat ’che uost gvnernl pm'blen or thia kind can be rcducad
\ _ ‘ \
B \

28 'rhis Msm:pﬂon, and those noncaming the diffsnntilbnity of
the cosfficients of the differential equetion and the boundedness in a
suffiojently small neighborhood ol the init;i:l lines, can' be relnxed in
particular’ auu.
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""”lu thon cnn ‘chooae d tbm thn nmmuouny umnmmu Mation

by 8 transformation of' variambles to the foliowing: to find a function
U (X ,'Ij,t) vhich matiafies the differential equation
.u““_. (0 Uyt %;M‘xy fcuw) ﬁxu +Qu + ruw Su %,o (2:@)
and which, with lte iirst-derivatives E assumes prosori‘bed values on the
plane 'eﬂﬂ .' In thia uase the eoetﬂeienta may be functions qr ‘the
vuriablen X v, t et should satisfy the conditlons
; a,m.c>0.4¢-b'>'°'- |
\é, ' Ve slso aum tht the coefficients are three tizen eontinuously
‘dittamtiablu ¥ith respéct to X, 4,1t , and that the tnitial values
\f‘ are four times Mmuutubh anéd “i thru tumes ait,i‘gmnthbh w:lth
"'mputtox,y.-- R - |
‘ \ " We now sssume the aoordimtu x and g ary rotated mmund & point
" in the fntyiel plane such that b-o  fhen in a eommmmomod G
of thn point th.\ «cnd#.tionl . .
. a- |b|>a, c-'%bha o
o *m nu'ﬂy mmma. We li.nit aur cmidinﬂom ‘co ﬂm naighborm

J. >G ‘such thlt L )
. a=d |
c-d
,. d-1b). |
is valid vith \céiltm‘b s. . w: oan tbon put the dﬁfcun‘bi&l oquatian 1n :
the form ' : o ” .
utt - (a.-d)u“ ((:-J,)ﬂ” -é-(ch b)(u“'fzu,gfgﬂ) -

. "‘!' (d M(“xv“z’“

i P ¢

,,-‘-u”)-&-du *Quuru,du o (30)

e - . o L : - = i
o i, LR b ekt e S0 LN DGR Sl Hi e s
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We now construct the grid of points

t=1h, x¢+y= mxh,‘ x-y=nch (l,mn= =1, 0,0, 2,007)

in tha region and su‘batitute for equntion (%0) & difference equa.tion

L u)=o in this gz:id. For’ this- purpoae ve adjoin to each grid point

: Pn the following adjaeent points : 'L'he points P‘ and P‘ ’ whieh come.

from P by diaplacemnta h nnd -h mapectively, in the dimction “‘y

. of the 4 -axia, jaud the points B Loy Pa which lie in. the samne plane
a8 P. pmllel to the (% ,g )-;plme; pee fig. 11 'I.'hosa points form s -
. .,"aemm elmnf." with the eérner points P‘ , P‘ Py By , Py .

“Foxr ucn md paine P. wn.mh ﬁ%mm G we mma tha ucona.

o .'vdimnntin qmvionts oncuring m (}o) by dirraronec quot.untl

‘“g-,.i

e

I

" N N 1 ‘.
a'bout P, in the cotahedpal eleent 1n the, roumu vay. w I

|
|
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Y
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Sl uéﬁ.@f?ﬁx; e by ""': (g 2% t),

We replace

Uty tUyy by
‘//-

- the coefﬂaicntl in tha d.iffcm« cmmtion Mm w.lul vhich m taken

) ”by the uocmomm af the uimmtm equltioxl u'c “the' ;poim: P, .

Qp the ﬂ.nt m mum punu t-o and tgh ve sssumy: tn-

"~ Ne :ublbituta comsponung d.tffaranee quatientl :ln ‘the oouhadml )
‘ nlmf. :nr the ﬁ.rot dii‘hrontm quotiontl occmhs dn (50). HC g:l.Vi

mination pyruid passing through it, - : ' . W \

o —fsu and h- k lhould unmrny comrga tomd tha comlpond:Lug

prncri‘bed diﬁ‘ennﬂﬂ. ¢ quo‘bientl '

-

‘ The lolution of the diffcmce /oqgation L(u) ﬂﬂ at'a P°1=1'v 1' ﬂ
""'.u.niqualy determined} by the value- on the twvo 'botton planu of the deters.

n
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For the proof of convergence we form over all elementary octahedrons

e ‘of a detemination pyramid the sum

h’gzg 2 ‘:‘!__A L (%)

‘and transform it by meana of the idmntities (7), (8) In this way fhare
arisas ona spatinl m.un mltiplied bv |\.$ : vwhich h qm.!.d.m*}ic in 1:"‘ rmz
dimrenee quotienis, and alno aum multiplied 'by [\ over the lntarul '
. dauble plms ’ :ln whieh appear the sgquares of all d.irrerence quthntl of -
;’ the type u‘ Uy u‘-u,, rreey Uy ~Ug oceun'tns on nnd bemn the .
doubla planu i thair coemuentn are mater than L f:lxld pounn e

Wmmmnl [ ——
?.
5
=k
5..
'ﬁ
ﬁ
5

p 2]
E
.
B
3
3
n
»
-
,35
8
B
i
B
Nl
E

.Lor wu- % npaee-unh wi&'bhs.. T
m ‘hore we van pmcaad in the seme fh-lz*m‘ﬁ as in ” '{, b, snt

\('»).

_ oan prove Lhat the mlut:lon of cmr dimmnae ﬂmﬂion emxvqrn. tmnrﬁ 5
the aolution ar the dimrantul aqua’eion. Con

. (Beceived\' on September 1, 1927)
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